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By William W. Davenport
SUMMARY

The accuracy of the substitute-stringer approach for including the
effects of shear lag in the calculation of the transverse modes and fre-
quencies of multistringer box beams is investigated. Box beams, the covers
of which consist of normsl-siress-carrying stringers on sheets which carry
not only shear but also normal stress, are anslyzed exactly. Frequencies
of beams with various numbers of stringers, obtained by means of this
exact analysis, serve to determine the possible accuracy of the frequencies
obtained by the substitute-gtringer approech.

INTRODUCTION

The use of a substitute-stringer approach for Including the effects
of shear lag in the vibretional analysis of bullt-up box beams was inves-
tigated in reference 1. Various thin-walled rectangular tubes were ideal-
1zed to substitute-stringer structures and the freguencies of the first
few bending modes of the ldealized structures were compared with those
of the original beams. The results indlcated where the substitute stringer
should be located in order to take into sccount accurately the effect of
shear lag on the frequency; for a fairly wilde variety of tube proportions,
locating the substitute stringer midwey between the web and the centroid
of the half-cover ylelded frequencles accurate within 1 or 2 percent for
higher as well as lower modes of vibration. BHowever, because the rec-
tangular tubes employed in the investigation hed constant wall thickness
there weas no definite information given regarding the accuracy of fre-
quencies that may be obtained for a beam which has discrete flanges and
stringers in the covers and different web and cover-sheet thickness.

The purpose of this report is to examine the accuracy of the
substitute-stringer approach when applied to a beam more nearly repre-
sentative of actual bullt~up box beams. Frequencles of various reallstic
multistringer beams of the type shown in figure 1(a) are determined by
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means of the substitute-stringer approach as given in reference 1. These
frequencies are then compared with the frequencies obtained by means of’
an exact vibrational analysis of a multistringer beam. Conclusions are
thereby made with regard to the proper locetion of the substitute stringer.

SYMBOLS

A total cross-sectional srea of stringers in & half-cover of
multistringer box beam

Ap cross-sectional area of flange of substitute-stringer structure

Ay, cross-sectional area of a substitute stringer

Ag cross-sectional area of flange of multistringer box beam

Ap cross~sectional area of pth stringer of multistringer box begm

Ag effective shear-carrylng aresa ~
a half-depth of beam S -y
b half-width of beam

bo = a

bp - width of pth panel o

byl half-width of middle panel when N 1is even, nonzero constant

when N 1s odd

bg distance between web and adjacent substitute stringer

be distance between web and centrold of area of half-cover

Bi(Q) parameter defined by equation (AlT)_or equation (AAO)_ o

C constant

Ci(q) parameter defined by equation (Al8) or equation (AkL) '

Di(Q) parameter defined by equation (A25) or equation (Ak2)



NACA TN 3636

E modulus of elasticity
. EAq_1bg
4 2
GtoL (1 + Oxd +l),q_)

G shear modulus of elasticity (tsken equal to E/2.65 herein)
g = aPL

tca
I bending moment of inertia

K1y (D = 2 A& (L + 55y) + (30)°

HIF
kg frequency coefficient, w Tl
kS coefficient of shear rigidity, L.JEL
L JGAsg
2
= (ix 2
5= (3) -t
L half-length of beam
N number of stringers ln a cover
Ni(P) paremeter defined by equations (A3L4) and (A35) or by equa-
tions (A43) and (Akd)
2
Pq = Pq
L2
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51 (e) determinant given by equation (A30)

o cover-sheet thilckness :

'bc' effective cover-sheet thickness for normel stress

tw web thickness

T meximum kinetic energy

U maximum straln energy

Up longitudinal displacement of e polnt on the pth panel

L vertical displacement of cross section of beam

X longltudinal coordinate

Yp chordwise coordinate for pth panel B
(p)

& o%m Fourier series coefficients

i,3,p,q,m,n integers

bg

Pq = 2GtoL

8 3 Kronecker delta (O when 1 # j; Lwhen i = i)
- o

B = =1L - (=1

N =3[t - (-1

A (p) _ Lagrenglan multiplier

1 mass of beam per unit length

s (») parameter defined by equation (A8)

w natural frequency

e natural frequency of multistringer beam in figure 3
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THE MULTISTRINGER BOX BEAM AND THE SUBSTITUTE-STRINGER STRUCTURES

A doubly symmetrical multistringer box beam of the type considered
in the present paper 1ls shown in figure 1{(a). In order that the covers
of this structure mey behave reelistically with regard to sheasr-lsg
effects, the cover sheets are permitted to carry not only shear but also
normal stress. The following simplifying assumptions are made:

(1) The flanges and stringers carry only normal stress.

(2) The webs carry only shear (the bending resistance of the web
is included in the flanges).

(3) Longitudinal inertia (rotary inertia) is neglected.
(4) The cross sections maintain their shape.

Assumptions (2) and (3) are generslly known to be good for reasonsbly
shallow beams such as those consldered in thls report; assumption (&)
is good if a normal amount of bulkhead stiffness 1s present.

In the eppendix an exact vibration analysis, similasr to those of
references 1 and 2, is carried out for a multistringer beam of the type
shown in figure l(a) The Rayleigh-Ritz energy procedure is used in
conjunction with appropriete Fourier serles end Lagrangian multipliers
to obtein frequency equations for a box beam with eny number of stringers.
Although the ansaslysis in the appendix allows unequel spacling of the
stringers, only the case of equally spaced stringers is considered
herelnafter.

The substltute-stringer structure for the beam of figure 1(a) is
shown in figure l(b). The flange~web combinetion of this structure is
the same as that of its prototype; the covers, however, consist of sub-
stitute stringers which carry only normal stress and sheets which carry
only shear. The megnitude of the sheer-lsg effect in this structure
depends on the location of the substlitute stringers. A suggested stringer
location given in reference 1 is

bg = 0.5bg | (1)

where bg 1s the distence between a flange and the adjacent substitute
stringer and be 1s the distance between a web and the centroid of
normal-stress-cerrying ares of the half-cover.

A vibration analysis of the substitute-stringer structure is carried
out in appendix B of reference 1.
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COMPARISON COF FREQUENCIES AS OBTAINED BY THE MULTISTRINGER

SCIUTION AND THE SUBSTITUTE-STRINGER APPROACH

In order to lnvestligate the possible accuracy of the substitute-
stringer approach for determining the frequenciles of multistringer box
beams, comparisons are made between the frequencies of four multistringer
box beams ag obtained by the analysis gilven in the appendix and the corre-
sponding frequencies of thelr substitute-stringer structures as obtained
by the analysis given in reference 1. The first three symmetrical trans-
verse modes of each beam with free-free end conditions are considered.

The four beems have cross sectlons as shown in figure 2 and are
identlical except for the manner In which the total stringer area is

distributed. Proportions common to all four beams are

A
= 6.0 W1 20 g = 0.75

= 6.0 o ety b'bc

oIt
o o’

where L, b, a, ty, and tg are, respectively, the half-length, the

half-width, the half-depth, the web thickness, end the cover-sheet thick-
ness; the total crosgs-sectlonal arees of the stringers in a half-cover is
given by A and the cross-sectlonal area of a flenge 1s given by Aj,.
In addition to the preceding properties, the four beams sre alike in that
stringers of each beam are equally spaced across the covers. The beams
thus differ only in the number of stringers on a cover; the cases cone-
sidered are for N =1, 4, 7, and .

In figure 2 the various relatlons needed to obtain the perameters
of the multistringer solution for the four beams are given. When N 1is
infinite the stringers are smeared out to & "stringer sheet" for which
the effective normal-stress~carrylng thickness tc' is different from

the actual cover-sheet thickness tc.

The cross sectlon of the substitute-stringer idealization is slso
shown in figure 2. In accordance with the ldeelizing procedure of the
substitute-stringer approach, the followlng relations are used to deter-
mine the parameters needed in the substitute-stringer solution of refer-
ence 1l: '

bp = Ag Ar, = A + big

where Ap and Ay are, respectively, the cross-sectional area of a

flange and stringer of the substitute-stringer beam. It should be noted
that the only geometric property of the substitute-stringer structure
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which mey be different for each of the four beams is the value of bg.
For the substitute-stringer location defined by equation (1), bg varies
by virtue of the variation of bgp. The values of bp for the four beams
are:

For 1 stringer,

be = 0.7Lhb
For 4 gtringers,

be = 0.543b
For T stringers,

ba = 0.531b
For infinity stringers,

ba = 0.500b

L
The frequency coefficients kp = w %%— obtained from both the

substitute-stringer solution where bS = O.5bc end the multistringer

solution for each of the four beams are given in tsble I. In addition
to these results, the frequency coefficlents obtained by a solution
which includes trensverse shear but not shear lag have been included.
This latter set has been presented in order to demonstrate the influence
of shear lag and was obtained fram equation (15) of reference 3 with the
rotary lnertis parameter krt equal to zero.

The influence of stringer location on the frequency w of the
substitute-stringer structure for each of the four beams is presented
graphically in figure 3. The frequency is given in the form of its

relative error é%-- 1 when compared with the exact frequency we of

the multistringer structure; the curves indicate how the errors vary
with substitute-stringer location.

DISCUSSION CF RESULTS

The resulis given in table I show good agreement between the fre-
guency coefficlents as obtained by the substitute-stringer approach with
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bg/bg = 0.5 and those obtained by the multistringer solution. However,

as may be noted, the frequency coefficients for the substitute structure
with bg/bg = 0.5 are slightly high for all but the third modes of the

cases for N =1 and N = «. Reference to figure 5 indicates that, for
all but the cagse of N = «, the maximum errors for the modes consldered
would be rediced by using a value of bs/bc = 0.55; for exsmple, for the

cage of N = 7, the maximum error for this new value would be less then
1 percent. -

The results of teble I indicate that the stringer area distribution
has little influence on the frequency; however, the assumption should
not be made that the influence of shear lag is negliglble. As mey be
seen in teble I, the reduction in frequency due to the inclusion of shear-
lag effects is 4.8, 16.7, and 19.1 percent, respectively, for the first
three symmetrical modes of the case where N = T.

CONCLUDING REMARKS

The numerical results of the present peper indicate that the
substlitute-stringer spproach cen yleld accurate frequencles for multi-
stringer box beasms. Review of the numerical results of NACA Technical
Note 3158 together with those of the present paper suggests that a
value of 0.55 for bs/bc (ratio of the distance between web and adjacent

substltute stringer to distance between web and centroid of the area of
the half-cover) defines a slightly more appropriate substitute-stringer
location for built-up box beams then bs/bg = 0.50, the value suggested

in NACA Technical Note 3158.

Lengley Aeronsuticeal Lsboratory,
National Advisory Committee for Aeronsutics,
lengley Field, Ve., Jasnuary 6, 1956.
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APPENDIX
VIBRATION SOLUTION OF A MULTISTRINGER BOX BEAM

The simplifying assumptions for the multistringer beam are given
in the body of the paper and a cross sectlon consisting of two cases is
shown in figure 4. Case I applies when N 1is even and case IT when
N 1s odd, where N ig the number of stringers in a cover. In addition
to the dimensions and coordinates defined by figure 4, the length of the
beam is assigned the value 2L, and x 1s defined as the longitudinal
coordinate with its origin at the midpoint of the beam. It should be
noted that bp;j, the distence between the rth stringer snd the center

line for case I, is helf the width of the middle peanel.

For a transverse mode of vibration let w(x) be the amplitude of
e vertical displacement of a cross section and let up(x,yp ) be the

amplitude of a longitudinal displacement of & point on the pth peanel.
Then the meximum strain energy is

U=2E§ Apl ( (X) ))26x+

p=1 1 + 9N5(r+1),p L

r+1 bp
2Bt pgl (l - 9N5(r+l),p (.a_uPﬁﬂL) dyp dx +
r+l L pbp 2
26t p=Zl,2 (L - w8 (re1),p) f:, ( ayp ) dyp dx +
L uq(x,0) 2
2G dw | 1> 0-7) gy _ (A1)
atw '[-L (d_x a ) )
where
N
oy = L=t | (a2)
and
B(rs1),p = O (pfdr+1) (83)

B(rs1),(re1) = 1
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The meximum kinetle, energy when the influence of longlitudinal inertia
is neglected 1s

L
T=%mﬁﬁLﬁw ()

where p - 1s the mass per unit length of the structure which the multi-
stringer beam represents. It should be noted that equations (Al) to (Ak)
hold for XN 2 O.

In the following sections appropriaste Infinite trigonometric series
are assumed to represent the displacements and then the Rayleigh-Ritz
energy procedure is applied.

Symmetrical Trensverse Modes of a Free-Free Multistringer Beam

Appropriate trigonometric series for the symmetrical transverse
mocdes of a free-free beam are

i naty.
(x,¥5) = 5 a:mn(p)Sin IX cos P
s m=1,3,5 n=0,1,2 ek °p

(p=12 ... (r+1)) (85)
w(x) =C + i_ cp cos TEX (6)

=1,3,5

The choice of these particular series was gulded by the orthogonality
required for simplification of the expressions in the strain-energy
equation; C in equation (A6) is introduced in order to allow w(tL)
to be unrestricted.

Because of the geometry of the structure the following restraining
relations must hold: '

up(x,bp) - ups1(x,0) =0 (p=12,...2) (A7)

Substituting equation (45) into equation (A7), multiplying by sin Zr=
where 1 = 1,3,5, . . . , and integrating from -L %o I ylelds

i l;in(p)(_l)n - ain(p+12] -¢,® -
n=0,1,2

(p=12, . ..7)(1i=01,35,...) (A8)

L]
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In accordance with the Reylelgh-Ritz procedure the expression

r

U-T- > i M(p)¢m(P) (89)

p=l,2 m=l,3,5

is held stationary with respect to the coefficients of the assumed series.
The A's in expression (A9) are lLaegrangian multipliers introduced to
maintain the condition stated in (A8). The expressions for U and T

of equation (A9) are given by equations (Al) and (Ak), respectively, and
the displacements are in turn glven by equations (AS) and (A6). Thus,
differentiating expression (A9) with respect to the ai(q)'s, ci's,

and C independently and setting the respective results equal to zero
ylelds the following equations:

Kij(l)aij(l) + ERi(l) ME;_ » ain<l) + % H(%’)ci - 1317\1(1)(-1)‘j =0

(Lt =1,3,5, . . .)(3 =0,L,2, . ..) (A10)

2]

(1 _ eNa(r+l),q)Kij(q)aij(Q) + 2Ri(qt) Z ELin(q) _

n=0,1,2
ﬁqE\i(q’)(-l)J(]— - B(r+1),q) - )\i(Q—lH -

(1 =1,3,5, . . . W(i=0,L,2, .. .0qg=2,3, .. .r+1)r2Z21) (ALL)

s 1-1

kyey + .g.(%) n=0,zl,2 o (L) - 2iegPre?(2) (c) 2c=o0
(1 =1,3,5, . ..) (al2)
kp2|C + i c,m(n-i—)(-1-)@-5i =0 (A13)
m=1,5%,5

where

KiJ(Q) = an(-iz,l)e(l + 503> + (31)2 (Alks)



12 NACA TN 3636

2
2 Eb -
Pq. = E;E%_ : (Alkp)
r (D - p 20n\? | g (Alke)
i q ('2_) T ®1q ¢
EA_ 4b
F 2 = 9-17g : (Alkd)

GtoL? (L + O (r41) )

= -bwbl e - (Alh'e)
'tca.
)

kg2 = ”‘;?* | (ALk£)
kg GAg 2 - (Alkg)
Ag = haty (Alkn)

= -133— A
Pq 2GtaL (ALkt)

Ky = [(ie—") - kg ksﬂ (A1kg)

Dividing equation (AlO)} by Kij(l) end suming over J = 0,1,2, . . .

glves, on solving for i aij(l):
J=0,1,2

D %J(l) = Bi(1),31}\1(1) - 2 H(%’i)ci(l)%

(1=135,...) (a15)
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Similarly, for equation (All):

NG CO R T S O C

J=0,1,2
(1 =135 ...)(a=23, ...r+1) (A16)
where
(-1)°
(a)
(@) o 30, T2y (@=1,2, . . . z)  (AL7)
Lrom (@ ST -
10,1,2 g, 1@
and
> i
Ci(q) _ 3=0,1,2 ki3
(@) < 1
1-8 + 2R
( ¥ (r+1),q) 1 j%,a Ei_;_a
(¢ =1,2, . . . 7+ 1) (A18)

(r+1)

In equation (Al7) the definition of By has been neglected because

when q =r + 1 in equation (Al6) the entire term containing Bi(r+l)

drops out.

By substituting equations (Al15) and (Al6) into equations (AlO)
and (All) the following equations msy be obtalned:

sy = Ki;(l) {cl@a')ﬂ(%) [231(1)01(1) ) il+ pane E'l)j ) QRi(l)Bi(l]}

(1=135,...)3=0,L2, ...) (A19)
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gy (@) = E_lm{ﬁqx;q-nERi(q)Ci(q)_;‘ rpgre (@ i) _2R1<q)31<qj}
13

(L1 =1,3,5, . . .} =0,L,2, . . .Ma=2,3, . . . 1) (A20)

Equations (Al9) end (A20), when multiplied by (-1)d end sumed over
3=0,1,2, . - ., yield

i ("1)38‘13(1) - (l)<2La)H(2 )c +B [ _(l) + Di(l] 7\1(1)

J=0,1,2
(i = 1,55, « « & ) (AEl)

and

3 -; 2 N CUNSIICUNICE IR PN Di@] p (@)

(i =1,3,5, . « ')(q = 2,5, « « . r) (A22)

In order to obtaln equations in the form of (A21) snd (A22) it should be
noted that '

Eﬁ(q) (a) :l ;;QK“ @

(a = 1,23, . « .1} (A23)

1 () (2) A C L B CORRR )
E:()ZL,E Kij(qj 2Ry J%,e Kij(q_:l) i i

(@ = 1,2,3, . . . r) (A24)
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where

(q = 1,2,5, « « . r) (A25)
Substituting equation (A15) into equation (Al2) results in

1.1
2 (l cq 1m\n (1), (1) _ 2 o
Esi 2H :|Bl a(z)Bi ' 2kBks( )( 1) =
(i =1,3,5, . . -) (AEG)

and substituting equations (A21) and (Al6) into equation (A8), when
p =1, glves

.Bi<l)(z§)ﬁ(i_;.) ﬁ N Eim n, (1) 4 22 2 ¢ ﬂ“ 1) _

b
bi 31(2)7\1(2)(1 - B(x41),2) = O

(1 =135, ...) (a27)
Substituting equations (Al6) and (A22) into equation (A8) yields

IONCEIN Ei(P) YOI TP i(m] MO

b (p+1), (p+l)
B2, PG ) ) =0

(1= 1,3,5, . - e = 2,5, « « r) (A28)

By Cremer's rule, equations (A26) to (A28) msy be solved for cy/Bq
in terms of C /515 if 1n the resulting expression the determinants in



the numerator and denaminator are each expanded by the first column and 1f in the resultlng

=
dencminetor the cofactor of -Bi(l)(af)ﬂ(jéﬂ) i1s also expended by the first column, the following
equation results:
i-1
c B
A" 2. ()], (1) e D@ TR (h29)
1 E{i - EH(%) Ci ;_-lsi + E‘H(jél) (Bi )251 .
where '
FRORR N ‘.‘g.,‘(ru Sk a (1) . '
2,0 0O, g o), b2 o) o 3, o) .
; S - ; '.ﬂhﬁ'ﬂ ' eiw)q.n’.(lﬂ“).q.ﬁg’_bﬂ). ] '
. . .
. ven q?"’"’rh‘“’*ﬁ"z(’m E.E].,l(r-ﬂ
. 2, afe D) api) y 2 gl 2o
. . . a2, R s ot E
. rm1,e3 .01} (M) s
5 =]
' e
| r- O\
i N
! o
!
[ [ !
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By expending the determinant of (A30) by the first column the following
recurrence relation mey be obtalned:

=2
6, ®) = o, (®) 4 p, (), Ppri Ci(PﬂE] 5, (@) _ %Ei@*lﬂ o, (P+2)

bp
(p=12,3, . . .r-1) (a31)

where

o, () . ]Ei(r) N O Ci(mﬁ
r

and
Si(r+l) -1
Now, by dividing the numerator and denominator of the right-hend member

of equation (A29) by Si(l) and then using equation (A3l), the following
equation results:

1-1
2332k32(f%)(’1)_§_6
cy = . 2
(1)), (2)
e (%ﬂ 1x)2 (5, 1)7s
Ei x()%s ] + () (v @ vy (2 (2 ba@i@))z >
¢, +Dy  + = cy (B - By 81

(i =1,3,5, . . ] (A52)

Repetition of this procedure ultimately yields the contimued fraction



. - 2k (2 2(-11%
2 (1) (s, )
S 2l ety = G
ao “{q - (302
0y 0 4 0y (2) 4 B3l (5) L (&, ))
| . e ‘.1(3) +D,,0) .. "
* o Bl (1) (=) i
Bz N T N O {a,)?
: ‘l‘-l—. 01(') . 1,”‘(r) . ‘?Tg-:_:_ ci(rﬂ.i
(=135 ...} (&35)
Noting the definition of E and then defining ni(P) by the equations
2
' B (PJ)
- 2§y P/ Pp-l P/ + oy P +——%—;i-)- il T
1 mi p
(p=1,2, . . .1) . (a%4)
ang,
b r+l)
L = I+l ci( (A35)
(r+l) br
1
Where

BT

9¢9¢ NI VOVH
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permits equation (A33) to be written as

i-1
2 2{»o 2
o = B8 1?‘2')('1) =135, .. (836)
NCE
e

Substituting equation (A36) into equation (Al3) yields the frequency
equation

52 41 + 2kg i L = 0 (A37)

(ﬂi‘:)z ky, - g%:ﬁ)_a_%w:
m=1,3%,5 2 Nm(l)

C

(p)

The following closed forms for the summations involved in Bj "',
Cm(p)’ end DylP’

reference L:

j=O>,T,2 Kmdl(P) ) 2(%‘-)131,.1:;11 (EEJI-)PP

mey be obtained by methods similar to those given in

(p=1,2, . . .T+1) (A38)

(=1)Y = 1
2 IGHJ(P) 2(’-’-’5-)?1, stan (BLPy

& (p=1,2, .. .1r+1) (a39)
=0,

.

By use of equations (A38) and (A39), equations (ALlT), (A18), and (A25)
mey now be written as '

(p) _ sech (%‘)Pp

) EK%)PP tanh (T-%‘:)Pp + Rm(P)]
(p) _ 1 ,
2[(1 - eNB(r+l),p> (%)PP tenh (%)pp N Rm(P):\

‘(p=l,2,...r+l) (Al1)

By (=12, ...r) (a0)

Cn
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5 (P) Rm(p) tanh (%’E)PP
2(8)p (Z)pp tenn (H)py + 7y P
(p =123, ...r) (Ah'a)

From equations (A34), (A35), (A%0), (ALl), and (A42) the following expres-
sions for Nm(p) and Nm(r+l) mey be obtalned:

(p) Ppo1 ot (p) sech? (%)Pp
Nm = =—{%-)Pp tanh (%P Bm .
°p ) (&) = (%)PPJ, 1

(I%)Pp Nm(p+1)

(pg=1,2, . ..r)by = 8) (A43)

2l o) (s s (e«

(r21)  (ak)

The rate of convergence of the series of frequency equations given
in equation (A37) is increased by substracting the expression

k 2 1
b ¥ m=1,3,5 (?-mé—r) kpn

and sdding the equivalent closed-form expression
tan
sz( kpks 1)

The resulting equation is

k| ban kpkg + 2k kg Z — L — | =0 (4:5)
m=l)5}5 kmz :EQ_ %(l) - km({g_f)
W
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where Nm(l) is determined by equations (Ak3) and (Alh). It should be
noted that equation (A45) will hold for N stringers where N # O.

For the case when N = 0, handling equations (Al2), (Al3), and (ALO)

when 7\1(1) =0 in a manner similsr to that used for the case of
N stringers yields equation (A45) except that

(1) (1)

N, ) =B Pl(m—é’l) tanh P]_(%"-) + Ry (AL6)

b1

The values Py and Ri(l) are given in equations (Alkb) and (Albc),
respectively; the value of by i1s, of course, bD.

In order that equation (A4S) together with (AL6) may apply to the
cagse for N = o, Pl nsy be redefined by

El:2 1
1~ 2
GL 'bc

(A7)

Antisymmetricel Transverse Modes of a Free-Free Multistringer Beam

Appropriate trigonometric series for the antisymmetrical transverse
modes of a free-free beam are '

(p) myx nnyp
up (x,¥p) = cos cos
o () m=0,2,4% n=0, 1,2 2L bp
(p=1,2, . . .1+ 1) (a48)
w(x) = Cx + Z; em sin mEL’PC— (ak9)
m=2,4,

As in the case for the symmetricel modes the choice of the particular
series was gulded by the orthogonality required for simplification of
the expressions in the strain-energy equation; the term Cx was added

in order to allow sufficient freedom of w(%L).
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Treatment sﬁilw to that accorded the case of the symmetrical modes
yields the equation

bt > - =0 (a50)
1 - kpgkg cot kpkg + 2kg kg T —| =0 (45

2

kp

where kg, kg, and k= are given in equations (Alkf), (Alkg), and (ALh]),

respectively, and Nm(l) is glven by equations (Ak3) and (Ahk). As
before, this equation holds for N stringers, where N # 0. When N =0,

equation (A50) msy be used, where Nm(l) is defined by (A46); for N = «,

T T U U Y [ ermnd eelll dln AAPLwntEY A AP o an crdxran 4

respectively; the value of by i1s, of course, bD.

In order that equation (A4S) together with (AL6) may apply to the
cagse for N = o, Pl nsy be redefined by

2,
_ Bt
2
GLP4g

Py (a7)
Antisymmetricel Transverse Modes of a Free-Free Multistringer Beam

Appropriate trigonometric series for the antisymmetrical transverse
modes of a free-free beam are '

up (x,¥p) = i > am'®) cos T qop BV
m=0,2,4% n=0, 1,2 2L bp

(p=1,2, . . .1+ 1) (Ak8)

oo

w(x) = Cx + Z; em sin B (ak9)
m=2,4,6 2L

As in the case for the symmetricel modes the choice of the particular
series was gulded by the orthogonality required for simplification of
the expressions in the strain-energy equation; the term Cx was added
in order to allow sufficient freedom of w(%L).
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TABLE I
EFFECT OF STRINGER DISTRIBUTION ON FREQUENCY
ky
Case Solution
1st symm. |28 symm.|3d symm.
mode mode mode
Elementary
N=1 + 5.42 24.5 48.3
transverse shear
@
Substitute—
o— stringer, bg/bg = 0.5 5.16 20.1 | 37.8
Multistringer 5.07 19.7 38,1
Elementery
N=§h + - 5.42 2.5 48.3
iransverse shear
Substitute~
I___:::j stringer, bS/bC = 0.5 5.22 20.8 9.1
Multistringer 5.15 20.2 38.8
Elementary
N=r7 + 5.42 24.5 48.3
transverse shear
Substitute=- -
— stringer, bS/bC = 0.5 5.22 20.9 39.2
Multistringer 5.16 20.4 39.1
Elementery
N=o + 5.42 2h.5 48.3
trensverse shear
| Substitute-
I I stringer, bs/bc = 0.5 2-23 21.0 33.5
Multistringer 5.19 20.8 39.9
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(a) Multistringer box beam.

(b) Substitute-stringer structure.

Figure 1.- Multistringer box beam and its substitute-stringer structure.
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N=I N=4
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(a) Multistringer beams.

Agp=Ap, AL=A+bic

(b) Substitute-stringer beam.

Figure 2.- Cross sections of multistringer beams and substitute-stringer
beam.
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Flgure 3.- Effect of substitute-stringer location on the accuracy of the
substitute-stringer approach for box beams with different siringer
distributions. The labels 1S, 25, and 35 denote symmetrical modes.
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Figure b.- Cross gection of doubly symmetrical multlstringer box beam
for elther even or odd number of stringers in & cover.
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